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Anion-induced ring-opening of fluorescein spirolactam:
fluorescent OFF–ON
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Abstract—N-(2,7-Dichlorofluorescein)lactam-N 0-phenylthiourea (L) was developed as a colorimetric and fluorescent chemosensor
for anions such as AcO�, F� and H2PO4

�. The addition of AcO� anion to the solution of L in CH3CN results in a distinct fluo-
rescence ‘ON’ observation as well as color change (from colorless to pink). The H-bonding interaction between AcO� anion and
thiourea moiety of L induced the ring-opening of the spirolactam of fluorescein moiety, which gave rise to the dual chromo- and
fluorogenic changes.
� 2007 Elsevier Ltd. All rights reserved.
Considerable attention has been focused on the design
of fluorescein/rhodamine-based chemosensors through
naked-eye observation and/or fluorescence method in
recent years because of their particular structural prop-
erties.1 As we know, the fluorescein/rhodamine with
spirolactam structure was non-fluorescent, whereas
ring-opening of the spirolactam gave rise to a strong
fluorescence emission.2 In fact, this is an ideal mode
to construct OFF–ON fluorescent switch sensors. More-
over, they have a longer emission wavelength (about
550 nm), which is often preferred to serve as reporting
groups for analyte to avoid the influence of the back-
ground fluorescence (below 500 nm).3 Actually, to date,
many spirolactam-based chemosensors have been devel-
oped for metal cations such as Hg2+, Pb2+, Cu2+, Fe2+,
and Zn2+.2 However, all of these cases are only re-
stricted in cation-induced ring-opening.

On the other hand, there is still a demand to explore
anion-induced ring-opening of the spirolactam through
anion recognition, though it is a more challenging work
compared with the conventional cation recognition
because anions such as acetate, fluoride, and phosphate
play crucial roles in a range of biological phenomena
and are implicated in many disease states.4,5 However,
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as we notice, there is no such case till now to illustrate
that the ring-opening of spirolactam can also take place
by an anionic inducement. With this in mind, we have
tried to append a H-bonding donor (thiourea group)
at the side of amide moiety of the spirolactam. In deed,
the amide-N-thiourea has been used to recognize AcO�,
F�, and dicarboxylate anions when it is appended to
other fluorophores.6 Herein, we applied this structure
to the fluorescein matrix and eventually found that
anions, in terms of a H-bonding with amide-N-thiourea,
also could induce ring-opening of the spirolactam in a
function of dual chromo- and fluorogenic changes
(OFF–ON).

As described in Scheme 1, L was synthesized from the
reaction of 2,7-dichlorofluorescein and hydrazine, fol-
lowed by the reaction with phenyl isothiocyanate in
61% overall yield.7,8 The structure of L was character-
ized by 1H NMR, 13C NMR, mass spectroscopy and ele-
mental analysis. L was selected for anion sensing mainly
based on the following considerations: (i) in the case of
Jiang’s example,6a amide-N-thiourea moiety was
attached to N,N-dimethylaminophenyl moiety to pro-
duce a ratiometric fluorescence signal, herein, fluores-
cein spirolactam was used to give a fluorescent and
colorimetric OFF–ON signal; (ii) the introduction of
thiourea makes ring-opening of the spirolactam possible
when the strong H-bonding acceptors are introduced. In
our present work, the addition of AcO� or F� resulted
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Scheme 1. Synthetic route of N-(2,7-dichlorofluorescein)lactam-N 0-phenylthiourea (L).
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in distinct dual chromo- and fluorescent changes of L in
CH3CN, H2PO4

� only induced a smaller spectral
change, whereas Cl�, Br�, HSO4

�, and I� did not lead
to any spectral changes.

Figure 1 shows spectral variations of L in CH3CN upon
the addition of AcO� anion (countercations of all
anions are tetrabutylammonium). From UV–vis titra-
tion curves (Fig. 1a), we found two distinctly new
absorption bands centered at 530 and 323 nm upon
gradual addition of acetate anion, whilst a small shoul-
der peak at 484 nm was also observed. The new peak at
530 nm was increased with the concentration of AcO�

and kept silent when more than 20 equiv of AcO� anion
was added. In addition, an obvious color change from
colorless to pink was also observed with naked eyes.
Job’s plot analysis (inset of Fig. 1a) indicates the forma-
tion of 1:1 complex between L and AcO� in CH3CN. On
the basis of 1:1 stoichiometry, the binding constant
(Kass) was calculated to be 2.7 · 105 M�1 in ENZFITTERENZFITTER

program based on UV–vis titration data.9

The above process was also conducted by fluorescence
titration experiment using 10 lM of L in CH3CN
(Fig. 1b). Upon the addition of AcO� anion, a new
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Figure 1. (a) UV–vis and (b) fluorescence titration spectra of L

(10 lM) in CH3CN upon the addition of increasing concentrations of
AcO� anion (tetrabytylammonium salt, 0–20 equiv) with an excitation
wavelength of 520 nm (Inset: Job’s plot of L vs AcO�).
emissive band at 550 nm appeared and increased with
the concentration of AcO� anion. This observation is
also obviously due to a ring-opening of the fluorescein
spirolactam upon the addition of acetate anion, which
is in a good consistency with the results of UV–vis spec-
tra. Thus, this is such a case of dual spectral changes
applying for fluorescent and colorimetric switch sensor
(OFF–ON).

From the spectral results above and possible structural
change of L upon the addition of acetate anion, the
new absorption band at 530 nm is attributed to ring-
opening of the fluorescein spirolactam, whereas the peak
at 323 nm arises from deprotonated phenoxide of fluo-
rescein matrix, which can be deduced from the absorp-
tion spectra of 1 (only lacking thiourea unit compared
with L). From Figure 2, the addition of AcO� anion
to 1 only leads to a new band appeared at 323 nm, but
no peak at 530 nm, implying that the band at 323 nm
corresponds to deprotonated phenoxide and has noth-
ing to do with the introduction of thiourea moiety and
ring-opening of spirolactam. In addition, fluorescence
spectra of 1 were also kept silent upon addition of
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Figure 2. UV–vis titration curves of 1 (10 lM) in CH3CN upon the
addition of different concentrations of AcO� (tetrabytylammonium
salt, 0–20 equiv).



Figure 3. Color changes (first row) and fluorescence changes (second
row) of L (10 lM) in the presence of 20 equiv of different anions: (A) L

only, (B) AcO�, (C) F�, (D) H2PO4
�, (E) HSO4

�, (F) Cl�, (G) Br�,
(H) I�.
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20 equiv of AcO� anion. Therefore, it is noteworthy that
the ring-opening of the spirolactam of L to give fluores-
cence changes is mainly due to the H-bonding between
the acetate anion and thiourea group rather than depro-
tonation of the phenolic OH of the fluorescein matrix, as
depicted in Scheme 2.

Addition of F� anion into the solution of L in CH3CN
also resulted in the similar spectral variation as AcO�

did, whereas H2PO4
� only led to a smaller spectral

change compared with AcO� and F� because of the
weaker H-bonding acceptor ability. Within 1:1 stoichio-
metry, the binding constants (Kass) of L–F� and L–
H2PO4

� were calculated to be 3.2 · 105 M�1 and 4.6 ·
104 M�1, respectively.9 However, introducing other
anions such as Cl�, Br�, HSO4

� and I� did not lead
to any obvious spectral changes of L even if 100 equiv
of such anions were added, and their binding constants
were too small to be calculated. The color and fluores-
cence changes of L upon the addition of various anions
are shown in Figure 3.

The direct evidence of the ring-opening of spirolactam
comes from 13C NMR data. For free L, 13C chemical
shift of quaternary-C was 67.5 ppm, whereas in the pres-
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Scheme 2. Proposed ring-opening mechanism of L induced by AcO� anion.
ence of 10 equiv of fluoride anion, it was shifted to the
aryl region, indicating that the ring-opening of spirolac-
tam took place when a strong H-bonding acceptor was
added.

L shows a high selectivity for the strong H-bonding
acceptors, such as AcO�, F�, and H2PO4

� among other
Pink, Fluorescent "ON"

O

Cl

HO OH

Cl

N

O

N N

S

H H

O

Cl

HO O-

Cl
N

O

NH2

O

Cl

O OH

Cl

NHNH2

CH3COOH

OO

O OH

Cl

H
N

N N

S

C

O
H H

O O



300 400 500 600

0.0

0.2

0.4

0.6

540 560 580 600 620
0

100

200

300

400

500

F
lu

o
re

sc
en

ce
 In

te
n

si
ty

 (
a.

u
.)a X=mixture of Cl-,

Br-, HSO4
-, I-

L+X+F-

L+X+AcO-

L+X+H2PO4
-

L+X
L only

L+X+H2PO4
-

L+X+AcO-

L+X

L+X+F-

X=mixture of Cl-,
Br-, HSO4

-, I-

L only

A
b

so
rb

an
ce

 (
a.

u
.)

Wavelength (nm)

b

Figure 4. (a) UV–vis spectra and (b) fluorescence spectra of L (10 lM)
+ mixed anions including Cl�, Br�, HSO4

�, I� (100 lM) in CH3CN
upon addition of F�, AcO�, H2PO4

� (20 equiv, respectively) with an
excitation wavelength of 520 nm.
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common anions, which can be illustrated from Figure 4
as well. The absorption and fluorescence spectra of L are
not markedly changed upon the addition of mixed an-
ions including Cl�, Br�, HSO4

� , I� (100 lM, respec-
tively). To this solution (L + mixed anions), addition
of F�, AcO� or H2PO4

� leads to distinct fluorescence
and color changes. Thus, anion-induced ring-opening
of L is according to the following sequence: AcO� �
F� > H2PO�4 � HSO4

� > Cl� � Br� � I�. This is to
say, the occurrence of recognition event here is based
on the H-bonding interaction between L and anions.

In summary, we herein demonstrate a fluorescein-based
dual chromo- and fluorogenic chemosensor for anions
mainly due to a H-bonding interaction. To the best of
our knowledge, this is the first case to explore anion-
induced ring-opening of the spirolactam of fluorescein/
rhodamine derivatives. Investigations along these lines
for development of more sophisticated systems for rec-
ognition of anions, especially in buffered aqueous solu-
tion, are still in progress.
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